Fumarase Overexpression Abolishes Hypertension Attributable to endothelial NO synthase Haploinsufficiency in Dahl Salt-Sensitive Rats

Research output: Contribution to journalArticle

Authors

External Institution(s)

  • Fudan University
  • Medical College of Wisconsin
  • Shanghai Jiao Tong University
  • Xi'an Jiaotong University

Details

Original languageEnglish (US)
Pages (from-to)313-322
Number of pages10
JournalHypertension
Volume74
Issue number2
StatusPublished - Aug 1 2019
Peer-reviewedYes

Abstract

Human blood pressure salt sensitivity is associated with changes in urinary metabolites related to fumarase (Fh) and nitric oxide (NO) metabolism, and fumarase promotes NO production through an arginine regeneration pathway. We examined the role of the fumarase-NO pathway in the development of hypertension using genetically engineered rat models. Dahl salt-sensitive (SS) rats with heterozygous mutation of eNOS (endothelial NO synthase or Nos3; SS-Nos3+/-) were bred with SS rats with a hemizygous Fh transgene. SS-Nos3+/- rats without the Fh transgene (SS-Nos3+/-/Fh0/0) developed substantial hypertension with a mean arterial pressure of 134.2±3.7 mm Hg on a 0.4% NaCl diet and 178.0±3.5 mm Hg after 14 days on a 4% NaCl diet. Mean arterial pressure decreased remarkably to 123.1±1.4 mm Hg on 0.4% NaCl, and 143.3±1.5 mm Hg on 4% NaCl in SS-Nos3+/- rats with a Fh transgene (SS-Nos3+/-/Fh0/1), and proteinuria, renal fibrosis, and tubular casts were attenuated in SS-Nos3+/-/Fh0/1 rats compared with SS-Nos3+/-/Fh0/0 rats. eNOS protein abundance decreased in rats with the Nos3 heterozygous mutation, which was not influenced by Fh overexpression in rats on the 0.4% NaCl diet. However, the decrease in NO metabolite in the renal outer medulla of SS-Nos3+/-/Fh0/0 rats on the 0.4% NaCl diet was reversed in SS-Nos3+/-/Fh0/1 rats, and levels of L-arginine, but not the other 12 amino acids analyzed, were significantly higher in SS-Nos3+/-/Fh0/1 rats than in SS-Nos3+/+/Fh0/0 rats. In conclusion, fumarase has potent effects in restoring NO production and blunting the development of hypertension attributable to eNOS haploinsufficiency.

    Research areas

  • arginine, hypertension, kidney, nitric oxide, transgene

Citation formats

APA

Harvard