Multifidelity uncertainty propagation for cardiovascular hemodynamics

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Authors

External Institution(s)

  • University of Notre Dame
  • Stanford University
  • Sandia National Laboratories

Details

Original languageEnglish (US)
Title of host publicationProceedings of the 6th European Conference on Computational Mechanics
Subtitle of host publicationSolids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018
EditorsRoger Owen, Rene de Borst, Jason Reese, Chris Pearce
StatusPublished - Jan 1 2020
Event6th ECCOMAS European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th ECCOMAS European Conference on Computational Fluid Dynamics, ECFD 2018 - Glasgow, United Kingdom
Duration: Jun 11 2018Jun 15 2018

Publication series

NameProceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018

Conference

Conference6th ECCOMAS European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th ECCOMAS European Conference on Computational Fluid Dynamics, ECFD 2018
CountryUnited Kingdom
CityGlasgow
Period06/11/201806/15/2018

Abstract

Predictions from numerical hemodynamics are increasingly adopted and trusted in the diagnosis and treatment of cardiovascular disease. However, the predictive abilities of deterministic numerical models are limited due to the large number of possible sources of uncertainty including boundary conditions, vessel wall material properties, and patient specific model anatomy. Stochastic approaches have been proposed as a possible improvement, but are penalized by the large computational cost associated with repeated solutions of the underlying deterministic model. We propose a stochastic framework which leverages three cardiovascular model fidelities, i.e., three-, one- and zero-dimensional representations of cardiovascular blood flow. Specifically, we employ multilevel and multifidelity estimators from Sandia's open-source Dakota toolkit to reduce the variance in our estimated quantities of interest, while maintaining a reasonable computational cost. The performance of these estimators in terms of computational cost reductions is investigated for both global and local hemodynamic indicators.

    Research areas

  • Cardiovascular modeling, Multifidelity Monte Carlo sampling, Multilevel Monte Carlo sampling, Uncertainty quantification

Citation formats

APA

Schiavazzi, D. E., Fleeter, C. M., Geraci, G., & Marsden, A. L. (2020). Multifidelity uncertainty propagation for cardiovascular hemodynamics. In R. Owen, R. de Borst, J. Reese, & C. Pearce (Eds.), Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018 (pp. 2759-2770). (Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018). International Centre for Numerical Methods in Engineering, CIMNE.

Harvard

Schiavazzi, DE, Fleeter, CM, Geraci, G & Marsden, AL 2020, Multifidelity uncertainty propagation for cardiovascular hemodynamics. in R Owen, R de Borst, J Reese & C Pearce (eds), Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018. Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018, International Centre for Numerical Methods in Engineering, CIMNE, pp. 2759-2770, 6th ECCOMAS European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th ECCOMAS European Conference on Computational Fluid Dynamics, ECFD 2018, Glasgow, United Kingdom, 06/11/2018.